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Abstract. The total dielectric response of a solid has contributions from the polarizability
of the electrons and that associated with jonic displacements. In this article, a method
for evaluating the dielectric response of simple metals is developed. Using the dielectric
function of the electron gas and the equation of motion of the ions, the explicit form
of the total dielectric function is obtained. The features and applications of this method
are discussed taking the example of Na. In the example, the comections from the van
der Waals interaction are evaluated and shown in the figures.

1. Introduction

The dielectric property of a metal is determined by the free electrons in it as well
as by the lattice positions corresponding to its crystalline structure. The contribu-
tion of the ions has two components, one corresponding to their intrinsic induced
polarization, and the other corresponding to the induced polarization associated with
their displacements from equilibrium position. There have been some studies of the
total dielectric response of a metal, which incorporates both the electronic and ionic
contrbutions [1, 5].

The objective of this paper is to give directly the relationship between the total
dielectric function of the metal and both the dielectric function of the constituent
free electrons and that of the constituent ions through their vibration properties.

2. The equation of motion of charge fluctuations

In a simple metal represented by a monatomic lattice, we can assume that the equi-
librium position of ions are at the lattice points {R,,}, and the free electrons have
the equilibrium density n,. The corresponding quantities for the disturbed system
are R; = R,y +u,; and n(r,t) = ng(r,t) + n(r,t), where R, is the instantaneous
position of the ith ion and «, is the displacement from R;,, and n(r,t) is the in-
duced electron density and n(r, %) is the total electron density. The Hamitonian for
the ionic system in the presence of an external test charge density p,,.(r,t) is then

givenby
H= E + ZV(R R)—Zezzjn(r HVe(r - R;)d%r
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P, is the momentum of the ith jon with mass M, and (Ze) is its charge. N is a
total number of jons in the system in the volume 2. Vi¢(r — R,) is the interaction
potential between the ion at R; and the valence electron taking into consideration the
pseudopotential of the ion. For simple metals such as Na, Al and Pb, we can choose
an approximate pseudopotential in the form of a simple empty-core pseudopotential
to evaluate the Hamitonian [8]. The summation V(R; — R, ), which is the interaction
potential of the ions at R, and R,, can be written in the form {16}

S"V(R; - R;)} = constant + Y u;A;;u; )
iy [F11
where
Ay =Y kkVieltRo-Rio) g j ®
&k
A ==Y "3 kkVelBiomRi)  jg )
ko

Here V), = V{4 V°, V¥ is the Coulombic part of the interaction given by
4me?fk? and V?° is the non-Coulombic part. The summation here is over all
possible values of k; V, is the Founer transform of V(r). Thus the equation of
motion for the ith jon will be

W = “"ZA-J"’: + Zezviane(r,t)Vie(f— Rj)dsr

~ Zev, Pext(r, 1) d%r. (5)
1] I‘l‘— ;]

3. Total dielectric function of the electron-ion system

The induced charge density from the small displacement of the ions, treating the ions
as point charges, is

Pion(r:1) = Ze Ziﬁ(r — R;o —u;) - 8(r — Ryl (6)

Since the external test charge density p.,,(+,t) is assumed to be small, the in-
duced density of the electrons can be described in reciprocal space in the form,

~ en(k,0) = (g 1) [owlhksi) + prnll o)l %

This follows from Gorobchenko’s procedure [6]. Here e.(k,w) is the electronic
dielectric function.
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Thus equation (5) in reciprocal space can be written in the form (after eliminating
n(k,w), using equation (7)),

Mg, + N {E(k + K Xk+ K, )Viik, - KmeV:'cm} "Gk

_—— iMwIzpext(k!w)k (8)
Zee (k,w)k?

where
1 ; 4nw(Ze)’N
' ne < ie 2 _ il S
Ve= WS+ Vi + (e—e(k,w) - 1) O ey v 37

and

g = Z uje""'R-"“ .
J

If we consider the contribution to the induced charge only from the induced
polarization associated with ionic displacements from equilibrium positions, the total
induced charge density p,,(r,t) will be

Pin(r,t) = —en(r, 1) + pioq (7, ). ®)
Its form in reciprocal space is

Pin(k,w) = —en(k,w) + poq(k,w). (10)
The external test charge is assumed to have the form in space and time,

Pext(T11) = Peyi kg, w)eiomivat, 1

Using equations (7}, (6) and (11) in (10), a brief calculation leads to

_ 1 iZek - g,
Pin(kg,wp) = (m 1) Pext(Kgstog) — WS (12)
From equation (8), we get
ipext(kswo)akko Q"l ok (13)

=" Zee (k,wy)k?

where @ is dynamic vibration matrix and has the form

1 N
m
Hence

1 _ _ Pex!:(koswﬁ) kﬂ " Q-l - kO
= (kor00) 1) Ponlkorwo) = g o m @

pin(lonn) = (
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The definition of the total inverse longitudinal dielectric function e,(k,w) is
1 pin(kﬂ"")

NI S 3 M 16
Thus we finally get the explicit form of the total inverse dielectric function:
1 _ 1 B 1 ko -3tk an
gy(kg,wy) e (kgywo)  £2(Kp,wp) k3 ’

If w, is set equal to zero in formula (17), it has the same form as the formula given
by Dolgov and Maksimov [5] for the static dielectric fomula. For a better understand-
ing of the physics behind this formula, reading the work by them is recommended.
They have very similar formulae.

As an example of the use of formula (17), we will discuss the dispersion relation
for longitudinal charge oscillation modes in a metal at long wavelengths. The form
of the electronic dielectric function at long wavelengths in the RPa is

1 w?

er—— — 2
(k,w) ! ‘-‘-‘g + B2k? — w? {18

B2 is proportional to Fermi velocity, and hence 32 > 0 [12].
In the small k region,

1 {N
thus
k2 w?
. -1 . p] 1 .

ke k= NIV =
If

N2 _ “’12 L A2L2

Mka B Ee(ks“’) +)81k

we can obtain the total dielectric function
w? wi
w?— 32k? T WP - BEkE
This can be obtained directly for a classical two-component plasma in the Jong
wavelength limit [15]. 57 is governed by the Coulombic and non-Coulombic interac-
tions between two ions. We will discuss this in detail later.
If we set e(k,w) = 0, the dispersion relations for small wavevector k [12] are

wd 2§ w2+ B + uf + BFR% + \f(wd + B2K7 — uf — B7K?)? + dwfu

e {b,w)=1-~

9

242 o 232
22y WoPetwWifi
= of + T (20)

wi [wg + B2k? 4+ wi + Bk — \/(wg + B2k — wi — BEK2) + 4wfwg]

_ wpBi + wiB}

2
=TT k2. 1)
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We can find the longitudinal dispersion relations directly from equation (8). The
way to achieve this is simply to find the roots of the equation. For long wavelengths,
it has the form

- N

We can then obtain the Jongitudinal dispersion relations through the equation of
motion for k - gy,

N
k-g, + H‘/,;47‘:2&-.-.-;,‘:0. 23)

Assuming the time dependence of k - g, o ei*“?, we get

—w?+ %V;kz =0, (24)
Again, taking

N 2 wi 272

M = e(k,w) +Ork

as before, and using (18), the solutions of (24) are obtained in the same form as (20)
and (21).

4. Conclusion

It is widely believed that the net attraction leading to glectron pair formation in a
superconductor arises from the dielectric function at zero frequency, «,(k,0), which
occurs in the calculation of the energy gap in the BCS theory of superconductivity. It
has been shown [3, 4, 9, 10] that at the static limit, 1/<,(k,0) < 1. This condition is
consistent with =,(k,0) being negative for some values of k. For small wavevectors,
however, e,(k,0) > 0 [10, 14] from the requirement that the compressibility of the
medium must be positive [17].

. We take equation (19) as a simple example to explore how and where £.(k,0)
can be negative. Since 52 is positive, the only possibility for the total static dielectric
function to be negative for small k is that 5} is negative. In fact, 87 is already
known to be negative in the Coulomb lattice [16). The non-Coulomb interaction
between ions can accentuate this effect. The dominant non-Coulomb interaction is
the attractive van der Waals imteraction, the strength of which is determined by the
polarizability of the jons [11, 13, 18].

We take a model which consists of point ions located on a lattice, which is
embedded in a uniform non-responsive background electrons. The equation of motion
of the jth jon has the form

Mi; =V, S V(R ~Ry) -V, S V(R —R;) i (23)
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V™ is the van der Waals interaction and has the form
ne __1_?_'?_ e d¢§ f‘tal(i‘f)az(if) .

VIS =57 f T (a2 + 6y @)
where o;(w) is the polarizability at the frequency w of the jth ion. It can be
assumed to have the form o;(w) = e’n;/ m,(w}—-w?) [13] where w; is the principal
electronic absorption ﬁ'equency Equatlon (25 becomes

Qh(,)
B(k,w) | Gug, | =0 @n

Qk(,)
where & is the dynamic vibration matrix in the uniform background model. It has
the form

E(k,w) = —5 ! [MZ(k+Km)(k+Km)Vh+x -~ Kn K, Vi, "‘*-’2']

The elements of & are evaluated following the procedure of Clark [2] and have
the following form for a body-centred-cubic lattice of sodium:

@y =248, + 3 {IF(K, + oW Ko + k)2 — F(K,)KE,)

(o () em[(Ge ) o)

% [1 —cos(mk,l.) cos(nk,l,)cos(mk,l,)]
— A{ 20430[1 cos(nk;) cos(wk,) cos(xk,)] + 82[1 — cos(27k,)]
—12[2- cos(2wk, ) —cos(2rk,)]} (28)

'
D,=5,+ z: [F(Kp + E)(Kpy + ko )( Ky + ky)

2
+ 5= ): [G, Y+ H, ( + %) z,z,,]
x [T - cos(':rkx =) cos(mk,l,) cos(mk,L,)]

15
—--%I-;Asin('rrk,) sin(wk,)sin(rk,). @)

The dimensionless ‘frequency’ A used here is related to the actual circular frequency
w by A? = w?/wf. The third terms in the right-hand side of (28) and (29) are from
the van der Waals interaction. Here the prime denotes the omission of m = 0,

F(z) = exp(—7*z?[a’n}/=?
Si; = F(k)k;k;

G, ={1- G(-%\/ﬁal)]/ﬁ
G(z) = (2/\/5)-/; exp(—2z%)dz

H; = (207 /v/7) exp(—Lna®®) /2
3h(wNa - 3wp)&?va(0)
32e2xab

A=
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o is a lattice constant. n is an arbitary parameter, the value of which is fixed to
achieve rapid convergence in the series in the matrix elements in equation (28) and
{29). The subscript ! stands for the triad of integers I,,!,,I, which are either all
odd or all even. (k,,h,,h,) are integers which are either all even or one even
and two odd. The values of wy, and o, (0) are taken from [7]. The results are
shown in figures 1 and 2. The corrections due to the van der Waals interaction are
dependent on the ionic polarizability. Obviously, for Na, the corrections due to the
van der Waals interaction are very small. For transition metals, large corrections can
be expected because of higher ionic polarizability.

1.0 5
1 o
O.5= B
-8
0.6 ;o ]
w(k) ] W2
4 10
0.4 ]
15
¢.2 T T T T -20 —— T :
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3 1.2
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4-3 0.8
3 T
Aw(k) 5 3] S5 2 .5
24 0.4
14 o.z-]
[ . ————————T [ T S
0.2 0.4 0.6 0.B 1.0 Q2 0,02 0.04 c.06 .08 Q.10
(6} k{1,0,0) 4 K(1,0,0)

Figare 1. {a) The dispersion relation without the
van der Waals interaction in a crystal of Na, along
the direction (1,0,0); (b) the difference between
the dispersion relation with and without the van
der Waals interaction in a crystal of Na, along the
direction (1,0,0).

Figure 2. () The inverse total dielectric func-
tion without the van der Whaals imteraction in a
crystal of Na, zlong the direction (1,0,0) for small
wavenumbers, I a unit of (2#/a), a being the
lattice constant;, (b) the difference between the in-
verse total dielectric funetion with and without the
van der Waals interaction in a crystal of Na, along
the direction (1,0,0).

Work is in progress for evaluating = (k,0) for materials of interest in supercon-

ductivity.
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